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1, Introduction. The most general differential  equation t o  which the 

dynamlcal description ofthe t iSle  applies is 

i 

where dots denote.differentiation with respect t o  

for this equation is t o  determine the behaviour of 80luti0ns 88 

When we attack'this problem, the most obvious question'is whether every solution 

is'bauaded as t 4 w ;  this question is open except when g(x) is linear. 

(Moser's methods i n  (a and (9 raise hopes that when g(x)/x 4 0 0  it can be 

answered afnrmstively,) In the special case when p(t) is periodic, (1.1) * 

m a ~ r  have periodic solutions; it 'is clear that any such solution is bounded, 

and it is worth mentioning tha t  finding periodic solutions is the'easiest way 

of finding particular bounded ones. 

unsolved, there is a special interest i n  f lnding a large class of particular 

baunded solutions: lf we know such a class then, although we cannot say whether 

the general solution is bounded or not, we can make the Imprecise comment that 

t. The essential problem 

t -00 ,  
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So long as the boundedness problem is 
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J c3ther the general solution is in fact bounded s t h e  StrUCtUre of the whole - 

- set of solutions is quite complicated. I .  t 

.In two previous p p e r s  of the same title, (2) and (3), I have considered - 
8 tractable special case of (1.1). 

suggests that  if g(x)/x 4 ag 88 1x1 3 a, (1.1) has all its solutions 

bounded and has some peric.iic solutions when p(t) 

g(x) 

A heuristic argument given i n  (a - 

i e  periodic; bSspecializing 

t o  be 2x3, we satisfy this condition and simpuf'y our calculations as 

. . far as possible. If p(t) is even, (1.1) is unaffected by changing t into 

* -t; 3f .p(t) is both even and periodic, we obtain the simpre criterion for 

a -odic solution given as Theorem A in 52. When we adopt both these 

s w c i B z a t i o n s  we are led t o  the special equation 
I 

. .  
I 
I '  

I -  ' 
i 
5 is written t o  emphasize the assumed evenness, and w e  shall assume 

8 . e(t) has least period 2r. In this paper I continue the discussion of (1.2) 

& ? .  

t 
!!; 
C I  

here e(t) 1 .  
,h ' L 

. 
and ccraPglete the work foreshadowed i n  (s) . 

In poM of method, this paper's principal contribution is t o  devel02 a 
I 

- 1  technique for making certain estimations: it will appear that  we need t o  I 

i 

. app-te certain partial derivatives connected v i th  (1.2)b We state a con- I 

/ 

i vqnient fora of these estimations as Theorem 7; it is not practicable t o  

enupciate Theorern 7 unt i l  we reach 53, since we shall  need t o  introduce notation. 
I I .  
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- of the i r  extrema in a period they could not be uniquely characterized in 

- 

I c ( t )  has a continuaus t h i r d  derivative, just one solution s(t) of (1.2) 
. 
fm which ' 

(I) \(O) = 0 %(t) has P e r i d  -3 

(ii) s(t) has, i n  0 Si t < a, k positive maxima, k negative 

minima and no other stationary points, and 

. (lil) ~ ( 0 )  = ka, + g(k'*) as k 3 00, 

M h e r ,  every solution of (1.2) which b s  peri& 2r, %( 

large is an \(t) for  a suitable k. 

Iir (a, by a process of interpolation between members of e, it was 

shoM that (1.2) has periodic solutions not in * whose periods may be arbi t rar i ly  



. long coaqpared with their  &litudes. About individual solutions we obtained 

less informstion than about those of but we did obtain results about the 

bterlacing of solutions, most naturally set out in terms of fixed points of 

the twlogical transformstion 

?It 
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If, as in ( J ) ,  we write Fk for the point (8, 0 )  of the (a, b)-plane, 

where 

tions 

that - 

5 = %,&O), w e  can translate Theorem 9 into the language of transforma. I 
88: 

i 

COROIURY t o  Theorem 9. For each large k there is, under the assumption , 

e(t) has a contikmus third derivative, j u s t  one fixed point Fk of - 
I! on the p-axis near (b, 0 ) .  Fbrther, every fixed point of large abscissa 

t 
this axis is 8n Fko . 

We can now state this paper's p r i n c i w  result on periodic solutions of (1.2): 

TBEOREM 10, Under the  assumption that e( t )  has a continuous third 

. derivative there is a constant positive integer C such that, when k & 

i 5 
large: 

*, exactly .;t(rn) fixed - (I) E' .- for each m with 2 S m S (k - - 
poipts of order m of T l ie  oa the segment Fk Fk+l, ssy (*am lef t  t o  right) 
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P b # O O O J  P m J O O O J  where 8 runs through the numbers less than m 

prbe t o  it3 

(Ai) if s/m E& st/m* are irreducible fractions for w h i s  

. -  

I I t  
O S  Z<;i;;”lj 

. _ .  

’ll - - Fk+l 
. - then Pm l i e s  t o  the l e f t  of Pslm,, the convention Pol = Fk, 
being edopted; and 

(iii) the solution (necessarily of l e t s t  period 2nm) t o  which 
4 

Psm corresponds has mk + s positive maxima and mk + s 
t h l s  period. 

negative minima in ’ 

is m o r t a n t  t o  point out that, in the quite long approximate calcula- 

tions which lead t o  Theorem 7, we do not require the evenness of e(t), and 

frcrm this remark it f~llows that we may, Kithaat lengthening the.discussion, 

choose an enunciation of Theorem 7 which applfes t o  the equation 

e. 
xc+  2x3 = At), (1.3) 

vhere fit) has least period 2R- but is not necessarily even. Such an 

enunciation is adopted i n  $3. It is evident that the greater generality cannot 

be e-loited i n  the papers of this series, since our criterion for periodic solu- 

., ’ tions of (1.2) depends directly on the evenness of e(t). In  a M h e r  paper 

* 1 - - - ,  . 
- 
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..$+), however, I shall obtain a criterion for periodic solutions of (1.3) and 

then shaw that the estimates contained In Theorem 7 can be applled t o  prove 

that (2.3) also has an infinity of periodic solutions. 

. .  

. .. . .  

I 

mept in §gr this paper does not refer t o  (a. Unlike (A, it 
requires that some of the detailed results of @ should be quoted. . A  summary 

of these results and of the notations which they justify is given i n  92; if 

these statements are accepted, this paper can be read independently of (2). 

Once the necessary notatiori frcm 0 has been reintroduced we can, in 03, 

- 

c 

I .  

cnuaciate Theorems 7 and 8. Also i n  §3 we describe the general plan of the 

calculations w h i c h  occupy §§4 t o  7 and lead t o  Theorem 7. 
Theorems 8 and 90 

In 98 w e  prove 

Ih §9 w e  establlsh Theorem 10 which depends on Theorems 5 and 6 of u. 
A t  the beginning of $9 we give a summary of the results needed from (2 12' 
these are accepted this section can be read independently of (2. 

It is dtural t o  ask how far the methods used i n  discussing (1.2) can 

be carried over t o  the equation 

0. . .  
x + g(x) = e( t )  . (1.4) 

It is straightforward but tedious t o  check that the approxinate calculations oP 

and this gaper can be closely copied when g(x) is a constant multiple of 

. .  
* . .  

. .  
J 

. .  

.. . . . . .  
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1xIa sgn x, u being greater than 2; the.estimates so obtained can be 

. applied t o  give resclts sbout periodic solutions, mors or less  detailed 

&ording 88 a is large o r  small. The more interesting questions are whether 

. -  . ve can our calculations satisfactorily under the conditions (occurring 

separately or together): (i) g(x) does not always increase, (ii) Ig(x) I 
has very different rates of increase as 

B(x)/x increases very slowly. Harvey ku has considered the case when g(x)  

behaves as a p o b o m i e  for large 1x1 . ~ssuming that g(x) i s  

x + 00 and x + -00, and (iii) 

’1 

for X > R > 0 or x < - R respectively, and requiring that  p1 > 1, % > 1, 

he shows that strong enough estimates can be obtained by the methods of (g) 
t o  deduce the existence of periodic solutions. Even in this polynomial case 

condition (ii) above shows i tself  as awkward t o  handle: t o  allow the possibil i ty 

tha t  %$ p2 colnglicates Harveyts work considerably and when, in fact, 

5.4 pr 

’ 

his estimates become weaker. 

X t  is easier t o  state how far the methods of (2 could be applied t o  

. (1.4). 

In (3, then, provided that 

only verbal changes in 

If some periodic 6 O h t i O n S  had already been found by the methods used 

g(x) was s t r ic t ly  increasing, we should need 

t o  show that we could interpolate an inf ini ty  of 
7 .  

. .  
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L '  
perfodic S O l U t i 0 n s  between them, and t o  show that q r  interpolated solution . 

was characterized by the number of m'axims taken In a period by the difference 

between it and a standard periodic solution. 

s t r i c t u  increasing, this characterization would fa i l  since ~emms a of (2 
would no longer hold; it would s t i l l  be possible t o  interpolate periodic 

801utiOn~ but the work i n  (A would have t o  be modified in a number of points. 

If', however, g(x) was not 
' * 

- 

It w i l l  be convenient t o  continue the numbering of theorems from 

snd ( 3  but t o  begin a new numberins of lemmas, sections and equations. 

2. plawn properties of (1.2) _and (1.3). 

conventions of (g) so that, i n  particular, dashes are not used as symbols of 

differentiation and, t o  avoid having two suffixes with quite different meanings, 

special values of ho are labelled as h: or h; related solutions of (1.2) 

being labelled x*(t), xi( t )  . 

2 
We shall  carry over the notational 

. 

' 

Although the estimation6 carried out in (3) w e r e  presented for (1.2)# 

the evenness of e( t )  was not needed i n  the work. Without individual mention, 

.ue sha l l  quote estimates from (2) 80 as t o  apply t o  (103), that is, we sha l l  

* vrite p(t) for e(t) in them, and, correspondingly, we shall now write 

x(t; a,b; to) far the solution of (1.3) with x ( t o )  = a, %(to) = b. This 

iqplies that we are assuming about p(t): 

(a) p(t) $8 not identically zero and has least period 2ir, 

. .  
. .. 

. .  . .  . . .  
. .  
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(C3) * At) I s  differentiable, xt) $8 continuaus, 

Jdt) J < E, IHt) I < E* 

We can conveniently recall  the notation and motivation of our ear l ier  

vmk by stating some simple properties of . .  
.. ..- 

. .  

0. 

y + 2Y3 9 ' 0 ,  ' 42.1) 

a differential equation which has the first integral 

3 2 + y I C = h e  IC 

Evidently every solution of (2.2) is periodic with least  period 2#/h, 
where we have written 

1 
Jo (1 - u4)4 du, (2. 3) 

am3 this is t o  say that the solution of (2.1) w i t h  y(0) = a and g o )  = b 

' is periodic with least perlod 2 (b2 + a4)@ If m is a positive integer, 

there are solutions of (2.1) having 2mn as a.period (not in general the least  

period); if we suppose Y and s t o  be integers and write 

'- 

ve see, in particular, tf iat  the  solution of (2.1) with HO) = 0 and 
as a period. We shall be concerned with similarly 

. .  . . ( .  
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determined solutions 00 (1.2) and (1.3). 

~ q y  solution of (1.3) has an infinity ~f stationary points. SO long 

as a solution remains "large" its stationary d u e s  are successively positive 

maxima and lsegative minima; in such a succession we wrlte 

the  values of t giving the maxima and %, %, %,... for the values giving 

ndnim. W e  describe an interval 

'-- 

ed R, ~g,... for 

as a cycle, and write e 4 v e t r e 4 v + 4  
for the intermediate values of t at which x(t) = 0. If elv + 1' %v + 3 

qg %,...aq+n are a l l  defined we say that the solution describes n cycles 

In the interval 

half-cycles and then saying that  the solution describes 

qo S t S or in % s t s corresponding t o  solution x(t) of 

go S t d %n, and we  extend this language by talking of 

$n cycles i n  

(1.3) we define h 4 (t) = %*(t) + x 4 ( t ) ;  we then have as an analogue of (2.2) the 

identity 

Whenever cp-; is defined we define h as the positive number for which 

hi = h4( @. 
t3 a 

consider a solution w i t h  a stationary value where t = q0, and write 

x((p,) = ho. 

for % and q+ t o  be defined, w e  introduce an r and prescribe that 

ho.> r. 

To express the requirement that the solution should be large enough 

To -ess the requireaent that  the solution should remain large fo r  a 



. considerable interval of t we have some choice of prescriptions. We 

~ ~ ~ C * ~ o *  'choose the fom that, given a positive @ there is an R = R(p) such that, 

vhen ho > R, the functions = h ( h o ,  'Po> and % = %(ho, tpo) are 

defined for all go and a l l  n d ph; and, -her, they are differentiable 

functions of ho and goo It is clearly open t o  us t o  discuss a large 

solution of (1.3) over a range of t by finding estimates for  and 

An terms of ho and cp,. Inside a cycle we have that, fo r  large hd 

- - .  - 

- -  ~ 

and 

In a succession of cycles we have that, if n d ph; then 

%n = 90 + + g(n%3 + g(nho4) 0 (2.8) 

. 

We were  concerned # In (2) and shall  be concerned here w i t h  values of 

"Although (2-10) presents itself, in (3) and the present paper, only because 
Ye take an ewn e(t), we introduce the estimation of h: before discussing the 
eWm@ss. 
e m s  t o  the equatson eln - 2 m  which we shall meet in (2). 

m s  is deseable since the estimation applies with only trivial 
-. . -* * ,  
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i 
ho. and caibinatians of positive integers n anh m for which 

B -  - .  -Evidently; when n = mk + s, (2.8) gives rmr as the principal term in 

. k ( ( k  + s/m)o, O); if k is "large", m not "too large" c a a m d  with it 

and s < m  it is straightforward t o  use the estimations above t o  show that 

there is an hz near' (k + s/m)a, which satisfies (2.10), but it $8 essential 

t o  make the order of choice clear. A convenient order is t o  suppose a positive 

A assigned, determine a C4 = C4(A) and a f = %(A), and then require 

It > 5 and 0 d 8 < m d Ak2. With these hypotheses we show that @and'&' v; 
defhed by 

. 
e' *Jrk.&r - - 1  ._- * 

3, € 

I 

I .  
axe such that I 

by appeal t o  the continuity of b ( h o ,  0), we deduce that there -is at least . 

ope hz ia & h* < 5 which satisffes (2.10). In order t o  use (2.8) and 0 
. .  ' *  

. .  
. .  

I . .  
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(a.9) we define 

of our definitions - -  we need t o  remark that a consequence 

is 

of 

. f ~ t  us now return t o  (1.~)~ OW criterion fo r  periodic solutions 

is the special case of Theorem 1: 

TREOFEM A. Fzr the solutions of (1.2) satisfyinq K(0) = 0, 4 

necessary and sufficient further condition that x(t) should have period 

2mrr 2 Nnm) - 0. 

Hence, If w e  determine an h: f o r  which (2.10) holds, the solution 

dt.; h> 0; 0 ) ,  or x*(t) say, w i l l  have the following properties: 

(I) x*(t) has period 3mrr pJ x*(o) > 0, 

. (21) %*(O) - 0, 

(iii) all the stationary points of x*(t) are positive maxima or 

negative dnima, and it has n of each in 0 S t < 2r1ur. 

In Wicular if n = mk + 8 where, for some A , k >  (A and O S s < m S A k 2  5 )  

' .  



i 

c I: 

we know that an h: can be found. In  (@ w e  =de k, m and 8 explieit 

'&*lL%: ,lClc by using the heavier notation x*(%rk, m, 8 )  instead of x*(t). However, 

. 
.I - 

\i 

this nutation remains ambiguous unless w e  prove h i  unique and we shall avoid 

it here. It will be more convenient t o  write {x*(t[k, m, s)] f o r  the class 

Of m 1 u t h ~  Of (1.2) hsving the properties (i) t o  (ill); with t h G  notation we 

can say (Sna this 1s the content of Theorem 2): 

F. fok sane A, we have k >%(A) 2 4  0 S s < m  d Ak2 then 
. 

(r*(t Ik, ma 's)) is not empty; f'urther. there iu a.t least one member for which f '. 

I -  - ana 
' .  

. .(k + ma' - Cq(A).mk"3'm4 < C2(t) + xu4(t) < (k + sm-' + C4(A)*mk 02 1 4 0 .  4 (2.16 

. The class already mentioned in §1 was defined in (9 as consisting of those 

~ . members of @x*(tIk, m, 8 ) )  which for some A had k > 

0 S 8 < m d Ale' and satisfied (2.15) and (2.16). 

(A , 5 )  
1e.t d * h & b b  

. .  

fh all the above work we have restricted ourselves t o  solutions having 

' only posttiye maxima and negative minima, that I s  t o  solutions which describe . . 

I . cycles. " .  rearranging our calculations we can shw that this is not too severe 

a restriztion: any periodic solutions (always wlth %( 0) = 0 )  whose periods 

are%pot too 1- c-d with t h e i r  amplitudes do describe cycles. W e  consider 

. .  
. I  

* . .  
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az xt(+) with period 2mr and rCl(0) 

h ray, satisfies 

0, 
t 
0 

whose emiplitude or 

- - -  
+ 1 + AC4(A) 

AC4(A) 

+ 1 + AC4(A) 

2 mof hi  > 2 + 

for sane positive A. We then find that 

for suitable IC and 8, and in the course of the proof we obtain 

m < A k 2  . .  

aad 

. .  

5 The estimation of part ial derivatives and the arrangement of the calculations. 

In order t o  describe how rapidly ha and vary Xith ho and qb we 

shall prove 

THEOm 7. Under the assnaption that p(t) has a continuous third 

derivative, if p is a given positive number and n d &3 0 then, for large 



' - - S  , . 
. .  . ' .  

. 
where the tendency t o  0 implied in the 0-terms is uniform i n  n. - 

-- . .- 

CORoLLARy. mere is an %(p) such that. whenever ho > R&p) and 
I - P + p  3 $8 defined and 

In the enunciation of Theorem 7 we have used the notation 

and we shall write other Jacobian matrices similarly. 

It will be anticipated that the Corollary t o  Theorem 7 will allow us 
U 

t o  show that, i n  suitably restricted ranges of n and ho, the ho satisf'ying 

(2.10) is unique, and, correspondingly, that when k, m and 8 are suitably 

restricted the class (x*(t Ik, m, 8 ) )  has only one "large" member, which we 

8- symbolize with X (tlk, P, s). 

vhat we have anticipated we. have a choice over our use of the parameter p 

. 
* When we try to  give a cleer enunciation of 

I 

. .  1 .  . . .  
a- . .  
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. .  
and the corresponding A = (p + l)a-’ of (2.13). In our estimations and i n  

their application t o  the existence statement of Theorem 2, carrying these 

m e t e r s  gave some extra generality at very slight cost. 

Ourselves in uniqueness statements, however, we must choose between working 

with 8 fixed value of A or working with a range of A and then eliminating 

A by t a M q  suitable mudma or minima of the expressions we obtain. 

second procedure of ccmse gives a somewhat better result but if we followed 

it ve ehould have t o  introduce extra details into our enunciations and proofs 

tthich would obscure the method by more than the -roved result w a s  worth. 

We shall give Lemma 17 an enunciation involving 

When w e  interest 

. .  

The 

A and camment again after 

that lemma on the possible use of the parameter, but i n  the remainder of the 

*per we shall s-ly put A =*l. In particular we shall establish+: 

TEEOREM 8. Suppose that m is a positive integer. There exist 

constants k6 and Ck such that for any integers k - and s satisf’yiq 

f1 am gratef’ul for  suggestions by the referee which have made the enunciation 
Of Theorem 8 mch more .illurninatin& than my original form. 

. .  
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there fs, under the assumption that e(t)  has a continuous third derivative, 

one and Only one solution of (1.2), say X*(t) = X*(t Ik, m, s)#. for which 

(I) X*(t) has period 2xtur, 

'(U) ;i"(O) 0 & X*(O) > (k - Cb)a 

* 
. (lit) all the stationary points of X (t) are positive--maxima 

or negative minima aEd there are mk + s of each in 0 d t < 2m. 

This unique solution satisfies 

* (k + smo1 - C4mko2)a, < Xu( 0 )  < (k + sm" + C4mk02)a . (3-1) 

.-her, all large periodic solutions of (1.2) which have fC(0) = 0 

have x(0) 

- if xt(t) has period 2pm, if JCt(O) 

largecampar ed with their periods are of this form: more precisely, - 
0, 

k and an 8 - with k > ks and 0 S 8 < m < k2 such that 

rt(t) = X*(t[k, ma 8) .  

. .  _ .  
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Y ve ccrmipare the enunciation of Theorem 8 with that of Theorem 2, 

we notice that we now lay heavier requirements on e( t )  th& the continuaus 

differentiability demanded before, but that the restriction m d Ak 2 (here 

of course with A = 1) is the same as before. Although it was suggested i n  

@) that w e  should have t o  subject both e(t)  and m t o  heavier conditions, 

I bsve since found that there i s  a choice of hypotheses. Alternative forms 

of Theorem 7 are briefly considered in $7, and the corresponding forms of 

Theorem 8 i n  08; for Theorems 9 and U) w e  adopt the continuity of t ( t )  out: 

right 88 our hypothesis. 

Qn the basis of' Theorem 7 the proofs of Theorems 8 and 9 are short. 

F'or the proof of Theorem 7, w e  first, in $4, find estimates for the elements of 

.cI Xhl ,  fpJ/#lo, qo)- If ho is large d t ) ,  = x(t; ho' 0; 9'o)# decreases 

manotonically t o  0 in the range eo S t S t; hence it has an inverse function 

vhich increases as x decreases in the range ho 

fbnction we write t(x) we have t(ho) = go$ t(0) = p Ram (2.5) we deduce 

x L 0. If for this 

The natation t(x) is abbreviatd: we should write t ( x ;  hot go). This Point 
- 
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is relevant since, when we have written x = h& we sh+ll.t&e the license 

of writing 

Once we have the estimates of $4 we can write dam similar estimates 

corresponding t o  ather ranges of t. 

Jacobian matrices) t o  give an estimate for  the desired ah, b ) / z h o ,  p0). 

In order t o  effect this combination we need t o  have estimated ( in  $5) certain 

integrals which arise, and t o  have obtained ( i n  $6) estimates for the products 

of matrices. 

4, 
ho, both "1 and 

. section we show that there are simple estimates fo r  their  derivatives. As might 

be expected, the estimates obtained by formal'differentiation of (2.6) and 

(2.7) are valid; with the exception of the estimate for %/&po they are accurate 

enough for  our gurpses. 

In $7, these are combined (by multiplying 

t 

1 

The estimation of derivatives of \ and [s. We know that, for large - 
'9 are differentiable functions of ho and cpo. In  this 

1 
t 

I s  t o  be observed that the integral i n  (3.4) is improper; t o  J u s t i Q  
8 

i .  

i 
i 

differentiation under the integral sign i n  Lemmas 3 and 4 we establish, by an 

easy appeal t o  the grinciple of dominated convergence, 
I 

'- 6 i <. c ,i*i rrd& IJDGIA 1. E g(t, @) has a partial  derivative w i t h  respect t o  A, which - 
18 continuous in 5 and X for 0 ;h f S 1 and X in some ranqe. then for the 



. -  

. .  . " . . .  

. .  . . .  

hasapart tal derivative with respect t o  X, namely . 
q€, X) = 

.. - &MA 21 - For 0 d d 1, ho > r  and all po the function 

t(h~k3 i d  derivatives with respect t o  ho and p'or 

these tu-e continuaus i n  E, 
Po) has 

ho gb . 
n ie clear that t(hog) is defined by 

Uhm 5 # 1, b It/& f 0 and our assertion follows by the standard'im;plicit 

function theorem. Evidently &/aho is  determined by 

and &/avo is determined similarly. 

If = 1, then t = qo for all ho and pe and therefore has 

derlvatlves, namely 
I .  



i 
b 

I 

b 

! -  

1 .  
1 .; . 
I .  I -  
c I 
i i 

). 
!- 

. . .  .. ’. I .  . 

b .  

.. -e- 

* 

To show that these derivatives are cont~nuous e 3 1 (necessarily 

ironn below), we write t = ‘po + 9, which makes q = g(l), and note first 

’ that 

c-. - 
anU, secondly, since &/a”, is the solution of + 6x 2 (t)u = 0 for which 

. .  

. .  
and 

Substitution in (4.1) gives us that &/aho 3 0 as q 4 0. Similarly 

- LEMMA 3. For large ho, 

If we rewrite (3.4) as 

where 

(4.4) 

a ’  
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. . .  . .  . . _  
- .  

. .  -23- . . 

. .  
It is evident that Lemma 1 can be applied t o  the improper integral; we obtain 

where 

. .  

. - .  . 
Write 

8 

and suppose that p I s  attained when e = eo. i n  (4.6) and we f ind 
€0 

Put = 

whence 

Now put p = 0 in (4.6); we obtain 



. .  . .  .. . . . .  . .  ' .', 

i n  (2.5) and changing ,the 

varlable of integration to C, we obtain 
~. . - . . . . . .  

If we differentiate this with respect t o  ho and w e  (2.7) In  the form 

. .  

. 

differentiating (4.4) with respect t o  qb we obtain 



c' 

i 

I ,  

3 

.. 

. .  

' .  

. .  . '  

Y now we write. 

. .  

(4.9) 
8 

and the proof proceeds s imi la r ly  t o  that of Lemma J 

5. The estimation of 1 Ht)r((t)dt over the ranges ( %a p3) and ( %, 3) 
In each o f the  r w e s  (%, @, (cpy (q, dt) is 
monotonk, and it takes the value 0 at one end, It w i l l  be convenient t o  

that Is, we think of writing t('')(x) for the t(x) of $2 and then generalize 

.this notatton. We write 
. .  



_ .  . .  . -  
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* .  

In each range we use the relevant analogue of ( 3.4). 

We have 

- LEMMA 7. p(t) has a continuous second derivative, then 

c as ho +ea a uniformly i n  %. 
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. .  

- IJM4A 80 If u(t) i s  periodic and has a continuous second derivative, 

q is a positive variable and 9’ a variable subject t o  0 S qt B q, - then 

- LEMW 9. - If p(t) has a continuaus third derivative then 

a8 h 4 0 0 ,  uniformly in qy 
0 - 
Maently we have 

and Similar e s t d t e s  in the other ranges. Ban these we 
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obtain, by taking 

ri 

. .  
.- 
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. .  

in Lemma 8, 

60 APproodm ations t o  matrices. In this section we consider 

of products of matrices containing a large parameter h. We 

workin57bytaking  h as ho o r  ha. The matrix 

some estimations 

shall apply this 

I s  typical of the matrices we shall meet as factors. 

men, as in (6.1)~ we  have a sequence of matrices involving error terms 

depending on h w e  shall say the estimate is  uniform in v i f  the constants 

iPlplled in the - 0-terms and the functions tending t o  0 implied in the 2-terms 

can be chcsen so as not t o  depend on 

is dominated by 

1v 8 e b  

.. , . . .  
. .  . .  

V. We shal l  say tha t  the matrix 

and write 

. -  
- I  

a 



. 

a 
It will be convenient to  use the notation 4 sv far the product 

1p . with the factors i n  the order ,stp ... p 1 . 
10. Zf, for all y a 4 4  and b <(B then 

"V "v - - *-v - 

' - m4MA ll. If 2 e 2 X 2 matrix with distinct latent roots 

. . s g@ $ then $ = fN zt g$,, where 

. 

IEMMA 32. Suppose that c are matrices satisf'Ying (6.1) with the 
"y - 

estimate uniform i n  v and that Ic,,I B C. ff K is a constant, then for  large 

with the estlmste uniform i n  N. 

9he by-pothesis implies that there are a flmction q(h) tending t o  0 

sad a constant C such thet, for a l l  v, 



C - 
?V 

and also 

, S V  - 
. .  

C =  w 

. . .  

( . (6.4) 

(6.5) . 



I . .  
. .  

, .  
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. 
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I 

. 
. .  The latent roots of are 

vhere A -4  ( 2 e c )  ho3 85 h co. We see that 

and ’< = 1 - IW + CNho4 + #N?A~ +g(ho5), 

and hence, i n  the notation of Lemma 11, 

ana 

=‘l + g(ho4). 

. It follows that the diagonal elements of C’ are each - 

and that the elements off the diagonal are 



. . .  . .  . . .  

. .  
. .. 

. .  * .  
.: I , .  . .  
. .  . .  

. .  . . .  

. . .  
. .  . . .  

. .  . .  . 

i;Phfho2 + 2m(h)ho2) = 2trNho2{ 1 + O(1)) . - and 

. 
. Our assertion now follows from (606) and (6.7). 

LeMMA 13. Suppose that I = N(h) < Kh, where K I s  a constant, and - - 
that - 

with the estimate uniform i n  K .  If I, is  a constant, then, for large h 
--- - 

and a q  Q satisMng q <'Lh2, 

with the estimate Wform i n  q. 

The estimate for gK implies that there are 8 f'unctlon q(h) tending 

t o  o and a constant c such that 



. . *  . . . .  

. 
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. 
where 

1 + Ch.3 ) 
q( h) ho3 1 + a-3 

1 + q(h)) 
P -  
)o 

P 

By.8pplying Lemma 10 t o  (608) iie obtain 

a 

1 

'The latent roots of 8 are 

. .  

A +  

- o(h-*). We see that where A *  

a 

s = (1 + C h = y  + Q(1+ 2 2  
A + g ( ( n A )  

and 

and hence, in the notation of Lemma U, 



- -  . . .  . . 

. .  

a n d .  
. .. 

.- - 1 + &I* 

These results allow us t o  estimate the elements of $p and our assertion then 

follows froaa (6.9). 

In the final stage of the proof of Theorem 7 a number of znatrices of 

the form . 

W i l l  occur. We note that, in this notation, Lemms 13 asserts that 

then - 



m-7 
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. 9 .  

7. The canbination of estimates, 

we shall vr i te  

Whenever the derivatives are defined 

it is evident that the results of Lemmas 3 and 4 may be rewritten 

We need t o  estimate the elements of 

, When the matrices on the right are multiplied together, there is approximate 

cancellation of the contributions t o  the element in (1, 2) position of the 

PrOdUCto 

matrices g,, and which we shal l  identify with those considered in 

$60 Hrst we take the factors (apart frm the end ones) four at a time and m i t e  

In order t o  take advantage of this we group the factors and define 

we then take the c in group of N, where N = [hdad, and write 
Y 

' .  



f 

r' 
' 

When n is odd we write 3(n-1) = Nq + 1 with 0 S Q, 0 d 1 < N  and 

A8 is suggested by the notation, the factor matrices groused in pK 

carrespond appraximately t o  a period of p(t). Similarly, the notation E,, 

suggests 8 cycle; it will be observed, however, that & 

Interval N + ~  S t 4 %,,+1, not 

vth cycle. 

c~~mespond6 t o  the 
Y 

i 3 

which we have defined as the %v-4 ai 9tv 

J 

. .  
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Evidently the method o f  Lemmas 3 and 4 i s  applicable t o  the estimation 

of the elements of &' - a(hLa %)/ah2, @; we need not repeat the work 

here but c& check the signs of coefficients by formal ly  differentiating (6.9) 

aha (6.U) of (3). We obtain, by inverting this matrix, the estimate 

8imila~ly, frcnn (6.U) and (6.12) of (z), w e  can check that 

Direct multiplication and use of the estimates h;' = hi2 + g(h3,  

G3 h i 3  + g(hi6) now gives (7.2), and ('7.3) is established similarly. 

- ISMhfA 16. Tf q i s  a positive -able and u(t) is a continuouq 

b c t i o n  with period 2~ for which 
. .  
. .  
. .  
. .  

. .  

. .  
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then. if 14 is defined as the greatest integer i n  
. .  

le1 

. 

. .  

tends t o  ‘ 0  E 9 40, unifornly i n  to . 
Proof of Theorem 7. 

First, multiply the matrices on the right-hand sides of (7.2) and (7.3); and 

then apply Lemma 9 t o  estimate the integral occurring i n  (1, 2) position, 

Secondly, replace the emor term S(hi5) In (2, 1) position (whose accuracy 

W e  recall  that we are now assuming 2t) continuous, - 

. cannot be fu l ly  w l o i t e d )  by the coarser z(h;*); we obtain 

a result w h i c h  we reaxrange i n  order t o  discuss 2 K0 

y yaries in any way subject t o  v S in S &h@ 3 the arguments leading 

t o  (2.8) need only slight modification t o  give 

. .  



men ‘v lies i n  the range 1 d v d NI the second error term of (73)  is  the 

01- InPOrtant and we obtain 

elwl = qs + 2 &(v=l)hi’ f g(hi3, (7.6) 

W h i c h . g l v e s ,  since F(t) is continuous, that z(%+l) =‘p”[% + 2&(v-l)hi1) + 41); 

mitable error terms we are led t o  

- 
this last 1s used i n  (7.4) and hkSk everywhere replaced by ho and 

@ r . 1  I 



- 

. 
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< 

Vhen y >lo, we write v = NK t A, where 1 S A d N, and rewrite 

. .  

. -  

- .  

. .  

(7-6) as 

uniformly in K, and, by using this instead of (7.6), find that the estimate 

the only difference f r o m  the argument leading t o  (7.9) being that, since no 

analowe of (7.8) is available, the error term i n  (1, 2) position cannot be 

reduced *om O(hi3 t o  .(hi?. This is of no imwrtance because it is sufficient 

to use tke coarsened estimate conveniently written, in the notation of (6.10) as 

- - 

I 

X=l 

Whether n is odd or even we have I S N + 1 C in, and therefore 
Q Q  

Q < $'m /(ho - cp) = O(ho). 2 Evidently the hypotheses of Lema 13 are f u l f i l l e d  - 



. . . .  . 

ana & =a(*&?), (7.131 
b 

and that if we substitute f'rom (7.12), (?.lo), (7.11) and (7.13) in the 

right-hand side of (7.1) Lezlnna 16 can be applied repeatedly. If n is 

odd, we proceed similarly; in e i the r  case we obtain & - 2 (&n), which is 

the assertion of' Theorem 7. 

r. If we vary the hypotheses on p(t) 

The c r i t i ca l  *EL. we obtain better or worse estimates for the elements of 

.element is that in ( I r  2) position, since it is the product of this and 

P h i '  wUch determines the size of \ - $ for go Under the assumption that 

p(t) had a continuous third derivative we obtained (7.7) xhose c r i t i ca l  element 
vas cvh; 4 + dhi4). We might say that this element was effectively 0(hi4) - 
because, on account of (7.8), the sum of the terms c ho4 contributed n(h-3) 

v o  0 

instead of g(h;3 t o  & and we o3tained the same final estimate for & 
as iP we had started with a term d h i 4 )  h &. 

+ I  

8 
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. .  -. ' fi W e  8 8 S W  about p(t), 88 i n  (3) and (a, 0- that it has 8 

. continuous derivative, Lemma 6 shows that we obtain an estimate for  J+, . . 

with a c r i t i ca l  element g(hi2). Working From Yds estimate we can obtain, 
2 it we worse the restriction n < p'ho, an estimate f o r  a .  similar t o  

that of Theorem 7; here again we axe l ed  t o  the that, for large 
c1 ho, b d a h o < O O  .-. 

B we assume that p(t)  has a continuous second derivative Lemma 7 

ehows that we obtain an estimate for  $,, whose c r i t i ca l  element is effectively 

- o(hi3.2 We can now carry through similar work if we impose the restriction 

8. The uniqueness of X*( t Ik, m, 8 )  0 We n m  return t o  (1.2) w i t h  an even 

e(t) and refine the results of $2 by exploiting the Corollary t o  Theorem 7. 

7 LEMMA 17. Corresponding t o  an assiffned positive A there is  a 

k&A) which. under the assumption that e( t )  .has a continuous t h i r d  derivative, 

has the following properties: if k, m 8 '  are integers satisfying 

k > k&A) 0 d s < m d Ak' there is one and only one member of h( t [k, m, 6 )  1 

for which 

. (801) 
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- Dettne %(A) = =[k&l), OD" R&p) + AC4(A) 1 where, as in (2.13), 

p = (A + 1 ) 8 .  

since k&A) h %(A) we know that when k > k&A) the class 

b ( t l k ,  m, 8 ) )  is not empty and that at least one member satisfies (2.15), 

and a fortiori (8.1). To see that this member is unique, we note that, if 

= rW(0) satisfies (8.1) and n = nik + s, we have on the one hand 
hO 

and on the other, by use of (2.14), 

These inequalities show that  

%(he 0 )  = mr which has at least one solution has just one. 

%(h@ 0 )  decreases and that the equation 

Remarks. (i) As mentioned in 43, we shall in the sequel simplify our work 

by choosing A = 1; we mey then treat k6 = k6(1) and C4 = 

If ye choose the alternative course of carrying A as a parameter and taking 

maximEL and minima our work is much simpler if  we can assert that k&), and 

other &&ions, have inverses. 

Cq(A), %(A) and %( p) are continuous and (s t r ic t ly)  increasing i n  the i r  

arguments, To make this assumption involves no loss of generality: ve need only 

observe that the essential properties required of these fbctions when we intro. 

as constants. 

On this accaunt it is convenient t o  assume that 

duced thenwee  that they should satisfy certain one-sided inequalities, and 
-- . -. 

f .  
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. .  

. .  
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. .  
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. .  

that we can, If necessary, re-define them t o  be continuaus and increasing 

without losing these properties. 

($1) I% vill be clear that, corresponding t o  the modifications of 

%bearem 7 mentioned i n  07 we can obtain modified versiom of Lemma 17 (and then 

of Theorem 8, again with a choice over our treatment of the parameter). When 

ye know only that e( t )  has a continuous derivative we assume m S A’k; 

when we know that e( t )  

PI S A% 

has a continuous second derivative we assume 

/ 

B 
In the  remaining work we shall require that e(t) has a continuous 

third derivative, 

Roof of Theorem 8. The existence and uniquenesg of X*(tIk, m, s) fo r  

@veri k, rn, s follows f’rom Lemma 17 i f  w e  take A = 1, 

t If -the solution x (t) satisfies (3.2) and (3.3) It is clear that 

xi(t) 

therearea k a n d a n  6 forwhich 

satisfies (2.17), (2.18) and (2,s) with A = 1, which implies that  

2 and (2.20), that is, p1 < k a hold, If w e  slightly weaken (2.21) and 

rearrange it we obtain 



0 .  

. .  

. .  

. .  

fkom (3.2). Lemna 17 and hence we have k > k6 and 

now gives xi( t) = X * ( t  Ik, m, s) . 
COROLLARY 1. If k L k6, 0 d s < m d k2 and, for a positive integer 

COROLLARY 20 Tf Ha, 0) IS a fixed point of T of order m on the 

. (8.2) 

(8.3) 

. .  0 S 8 < m < k2 there are a k and an s w i t h  k > k6 such that 

as Proof of Theorem 9. We need only rename t o  

obtain our enunciated form f r o m  Theorem 8. 

9. The arrangenent of fixed points. In this 

Uniqueness results w i t h  the work of ( 3  so as J 
section w e  shall combine our 

to  obtain Theorem 10. In (3) 
*L. 

e 



. '  

ve began irOan the result that, E n  * k h p, (1.2) has a t  least one solution 

q t ,  f o r w h i c h  

- 
(Ill) x,(t) has, in  0 d t < 2 ~ ,  k positive maxima, k negative 

This was introduced as a special case of Theorem 2 and of course did not use 

Theorem 9 by whish it is superseded for large k; we simply took \(t) t o  

be a' m d e r  of b ( t  Ik, 1, .O)) which satisfied (iv) . 
ular +t) we wrcke % for  x&O) 'and Fk for the point (\, Uj or 

the 

for which the difference x(t) - xp't) has simple proprties. 

Having chosen a partic- 

(a, b) -plane. We continued by showing that (1.2) has periodic solutions 

Theorems 5 and 6 are stated in terms of fixed points. Here rather than 

Theorem 5 we need t o  quote its Corollary that if the inteRers k, m 

satisfy 

s 

k > p  O s 6 < m  

+Here p is a constant and has no connection with the p(t) of the early 
sections of this pa er, 
of. the notation of f)) were modified in ( 3) , 

Tfi i s  I s  a suitable place t o  recall that sane features 
. 

.h\ 

. 
. .  

. .  
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there is at least one solution **(t) of (1.2) with the properties: 
- .. 

(i) r+*(t) has period a, 

( ia)  *(o) = 0, 

(ffi) all the stationary points of *(t) - x (t) are positive m a x h a  

or negative minima and this difference hes znk + s of each i n  0 S t < 2mr$ 

€%?Id 

P 

- 
b) 5 *(o) 5 1  

We shall write {*(tlk, m, s)) for the class of solutions having these 

properties. fb (3) we wrote x””(tIk, ma 8 )  ambiguously for such a solLtion 
w 

and were not inconvenienced since all our emphasis vas on existence problems 

but we shall avoid it here. When we h o w  tht (W( t lk ,  m, 6 ) )  has only 

one member we shall write X**(tIk, m, s) far it. 

If, for fixed k and m, we consider all 6 less thm m and prime t o  

it, the points of abscissae 

wng on F$k+l. Evidently if we l e t  m vary we obtain for each m at least 

q(m) fixed points of wder m; whether or not there are exactly dm) for 

each m, 

P 

that  Psm 2s of order m and that  i f  s/m < s’/m’ then Psm l i e s  t o  the 

left of P6,m,. is t h e  

[xW*(OIk, m, 6)) are fixed points of order m 

we shoved (as Theorem 6) that it I s  possible t o  choose a fixed point 

t o  correspond t o  each irreducible fraction s/m with 0 S s S m 2 sm 
- - 

In the course of the proof we showed that i f  x(t) - c - 
then x(t) - x (t) has mk + s positive m i m n  solution correspondin.? t o  Pa - 

- in  0 d t < 2m. We note that by allowing equality of s and m i n  

- P 

0 d s 3 m we pn>vide for the definit ion of Pol and Pu (which m o t  evldcntly 
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be Fk and Fk+l respectively if these points are uniquely.determined). 

In addition t o  these theorems we need t o  recall  f’rom (3) the idea that, - 
i 

i. 
I 

(I) has only positive maxima and negative minima in the interval 

to, XI 
~ 

(ii) has u(x - t) - u(t) and . 
(iii) has a mmcimm at t - 0, 

we can define a Arnction e(t) with e(0) = 0 which measures the rotation 

of the curye 

1 I 

about the  line (0,  0, t). 

2r, .of stationary points of u( t )  in [O; X) by 

This a c t i o n  is  connected with the number, say 

I 
. .  

-hers if v(t) is a given function we can under similar conditions define 

ev(t) 
u(t)  - v(t) has a positive maximum at t = o and v(x - t) = dt), then 

under the conditions 

t o  measure the rotation of P about the curye (v(t), Nt), t). If 

d2(t) + u4(t) > K, 

<at) + v4(t) < K, and 

(9.2) 

(9.3) 
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where K lsaconstant,  wecanccuwxre e and ev andshowthat 

eV(*X) 

of the equation and v(t) t o  be the special solution xp(t). 

e(&). In our applications t o  (1.2) we take u(t) to  be a solution 

we need t o  m e n t i o n  explicitly that, as appeared in the proof 

. of Theorem A, ip x(t) i s  a’solution of (1.2) with period Z m  for which 

No) = 0, x(t) = x(2mrr - t). 

- -a. 

- then ( W ( t  Ik, m, s)) has Just one member, namely X H (  t Ik, m, s), and 

X+.(t(k, m, 6) = X*(tlk, mq s). 

t . .  
Since k > p, ( d t  Ik, m, 8 ) )  is not eqpty, If x (t) denotes any 

(fixed) member of this class we have 

and therefore our hyptheses imgly (3.2) and (3.3) of Theorem 8, It follws 



dna this gives 

kr > k - - C4, n.  . 

We noke also that (2.16) with A = 1 gives 

1 
e(m) = (mk' + 8 ' )T .  

Wrlte v(t) = %(t) then the de f in ing  properties of ko( t Ik, m, 6)) give 

us eimilerly 

4 4  4 4  G2(t) + u4(t.) 2 (k' - C4) a > (k - - Cb) a > K, 

that is, that (9.2) holds. Since, evidently, (9.3) holds, we have :. , 

. .  



@(m) - q(m) or mk' + 8' = mk + s; this implies, by the use of 

0 S 8' < m and 0 d 8 < m that  k' = k and 8' - 8, . and hence (934) gives 

us that xt(t) is the only member of (x*( t Ik, m, 8 ) )  and our result 

fo l lws.  

Avrof of Theorem 10. Write C for  the integer which sat isf ies  5 

C 24+2c4<c +I, 
.3 5 

.nd suppose that 

k >- (p + +: C4, k6 + 3 + 2C4, 4 + $  C4). 
3 

. bitappose tnat 2s m L (k - C5)- and P is a fixed point of order m 

on the segment Fk Fkfl. Write a f o r t h e  abscissa of P. Then since 

we see that 

ue have that  there are a k' and an 8 such that 

satisfies (8.2), and, since m evidently sat isf ies  ( 8 . 3 ,  

We deduce that 



.. 

i .  

1 * '  

. .  
.. . 

and this -lies that 

vith, in parbicular, 

d r a f t s  of $1. 

a = X*(Ojk, m, 8 ) .  

ICC follows that there are exactly dm) fixed points of order m on 

and the set of these must be just the set of the Psm introduced in 

Since the latter satisfy (iii) of the enunciation of Theorem 10, 
'kFk+l 
Theorem 6. 

there is no clash in our uses of the notation and Theorem 10 is proved. 

1 ,  . .  . .  
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